W-2022

Seat Number

PANKH-14

BP 704 T Novel Drug Delivery Systems (747704)

Total Pages: 41 Time: 3 Hours

Max. Marks : 75

Instructions to candidates:

- 1. Do not write anything on question paper except your seat number in the given box.
- 2. Graph or diagram should be drawn with the black ink pen being used for writing answers or black HB page. or black HB pencil only, wherever necessary or asked.
- 3. No additional supplements shall be provided.
- 4. All questions are compulsory.
- 5. Figures on the right indicates full marks.

Section-I

All questions are compulsory.

 $20 \times 1 = 20$

- a) For pan coating of nonpareil sugar beads or pellets, particle size must be greater than
 - i. 500 μm
 - ii. 600 µm
 - iii. 700 μm
 - iv. iv) 800 µm
- b) Which of the following is a chemical method of microencapsulation?
 - i. Spray-drying
 - ii. Pan coating
 - iii. Supercritical fluid technology
 - iv. Emulsion-solvent evaporation
- c) Which of the following type of formulation has reduced dose dumping potential?
 - i. Sustained-release tablets
 - ii. Controlled-release tablets
 - iii. Enteric polymer coated capsules
 - iv. Enteric microcapsules
- d) Molecular weight cut-off for drug molecules for nasal administration is
 - i. 1000 Daltons
 - ii. 200 Daltons
 - iii. 600 Daltons
 - iv. 400 Daltons

PANKH-14

	e) How much area of the human skin is occupied by the appendages?
	i. 1 %
	ii. 0.01 %
	iii. 0.1 %
	iv. 10 % Occusert was developed by which of the following organization?
f	
	i. AstraZeneca
	ii. Pfizer iii. BioNtech
	Which of the following type of drugs are poor candidates for oral span-
g	Which of the following type of drugs are poor candidates for oral sustained/controlled release formulation?
	i. Drugs absorbed via active transport
	ii. Drugs showing extensive distribution
	iii. Drugs with unpredictable rate of metabolism
	iv. All of the above
h)	Which of the following is an example of synthetic permeation enhancer?
	i. Fatty acids
	ii. Amino acid esters
	iii. Azone
	iv. Water
ī)	Which of the following is NOT an application of microencapsulation technique?
	i. Taste or odour masking
	ii. Separation of incompatible materials
	iii. Enhancement of dissolution
	iv. None of the above
j)	Which of the following technique is also known as Wurster's process?
	i. Air suspension coating
	ii. Spray-drying
	iii. Hot-melt process
	iv. Pan coating
k)	Strong intermolecular interaction within a polymer structure leads to-
	a polymer structure reads to-

ii. Good permeability below its glass transition temperature

i. Low glass transition temperature values

iii. High glass transition temperature valuesiv. Difficulty in processing of the polymer

- Drugs limited by aqueous solubility at their site of absorption arei. Good candidates for oral SR/CR formulations

 - ii. Poor candidates for oral SR/CR formulations
 - iii. Their site of absorption can be changed
 - iv. None of the above
- m) Cell present in stratum corneum are
 - i. Metabolically active
 - ii. Metabolically inactive
 - iii. Both, metabolically active and inactive
 - iv. Having low density
- n) Which of the following is an example of a biodegradable polymer
 - i. Ethylcellulose
 - ii. Hydroxypropyl methylcellulose
 - iii. Eudragit S 100
 - iv. Polycaprolactone
- o) Niosomes are made-up of
 - i. Proteins
 - ii. Surfactants
 - iii. Carbohydrates
 - iv. Phospholipids
- p) Surface area produced because of alveoli in the lungs is
 - i. 20-30 m²
 - ii. 200-250 m²
 - iii. 70-80 m²
 - iv. 100-150 m²
- q) Hydrofluoroalkane are use as
 - i. Permeation enhancers
 - ii. Modified release polymer
 - iii. Propellants
 - iv. Surfactants
- r) Which of the following material would you use for developing a high-density dosage form?
 - i. Titanium dioxide
 - ii. Castor oil
 - iii. Colloidal silica
 - iv. Microcrystalline cellulose

- s) Which of the following is NOT a theory of mucoadhesion in the GIT-
- i. Wetting theory
 - ii. Mechanical theory
 - iii. Diffusion theory
 - iv. String theory
- t) Transderm-nitro is an example of
 - i. Polymer membrane permeation controlled drug delivery system
 - ii. Polymer matrix diffusion controlled drug delivery system
 - iii. Drug reservoir controlled drug delivery system
 - iv. Micro-reservoir controlled drug delivery system
- 2. Attempt any two of the following

20

- a) Describe in detail biological properties of drug molecules affecting their selection for formulating into sustained/controlled release dosage form.
- b) Write in detail about various techniques of microencapsulation.
- c) Write advantages of pulmonary drug delivery systems. What are dry powder inhalers? How are they formulated? Add a note on a metering valve.
- 3. Solve any seven of the following

35

- a) Write a note on methods of preparation of liposomes.
- b) How does cornea acts as a barrier for permeation of drugs into the eyes? Write briefly about dosage forms used in ocular drug delivery.
- c) Write advantages of intravaginal drug delivery. Add a note on hormone releasing IUDs.
- d) Write various methods of preparation of polymeric nanoparticles.
- e) Write any five approaches for designing gastroretentive drug delivery systems.
- f) Write any five approaches for designing implantable drug delivery systems.
- g) Describe various mechanisms by which permeation enhancer works in transdermal drug delivery systems.
- h) Write advantages and applications of polymers in designing sustained/controlled drug delivery systems.
- i) Briefly describe structure of human mucosa with neatly labelled diagram emphasize transmucosal permeability of drugs.